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INTRODUCTION

Back2rotlnd

The v_kst bulk of the work reported to date on identification of structural dynamic systems has

focused on identifying mathematical models that reproduce test results, but little consideration has

been given to the physical basis for the identified system equations. Typically, the identification

procedures make systematic adjustments to the system equation, commonly to the stiffness and/or

mass matrices but also to the damping matrix, so that the identified eigenvalues and eigenvectors

reproduce as closely as possible the results measured in tests. The result of this process is almost

inevitably identified mass, stiffness and damping matrices that are fully populated, that is, which

have nonzero values for almost all elements. Such matrices, while capable of producing plausible

eigenvalues and eigenvectors, can nonetheless be physically implausible in the sense that the large

numbers of nonzero elements throughout the system matrices implies direct connectivity among

the degrees of freedom that does not exist physically.

Identified mathematical models that are based on physically implausible system matrices may

be quite acceptable if the objective of the study is to develop a simulation model. However, such

results for analysis purposes are generally unsatisfactory because it is difficult or impossible to

relate specific features of the physical system to the analysis results. This problem is particularly

troublesome when the objective of the identification of a system model from experimental

measurements is an accurate system model that, in turn, will be used to make modifications to or

improvements in the original physical system. Such an example might be the modification of an
existing aircraft structure to accommodate a new mission. In this case it would be desirable to

fomaulate a structux_al model for the present structure, verify its accuracy against experimental

measurements, and then use it as the basis for the modifications. When the verification process

yields identified system matrices that are mathematically acceptable but physically implausible, the

resulting model may be useless as the basis for future structural modifications.

The objective of the present work was to develop a method for identifying physically plausible

finite element system models of airframe structures from test data. The assumed models were

based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of

the identified system matrices was insured by restricting the identification process to designated

physical parameters only and not simply to the elements of the system matrices themselves. For

example, in a large finite element model the identified parameters might be restricted to the moduli
for each of the different materials used in the structure. In the case of damping, a restricted set of

damping values might be assigned to finite elements based on the material type and on the
fabrication processes used. In this case, different damping values might be associated with riveted.
bolted and bonded elements.

The method itself is developed first, and several approaches are outlined for computing the

identified parameter values. The method is applied first to a simple structure for which the

"measured" response is actually synthesized from an assumed model. Both stiffness and damping

parameter values are accurately identified. The true test, however, is the application to a full-scale

airframe structure. In this case, a NASTRAN model and actual measured rfiodal parameters

fomaed the basis for the identification of a restricted set of physically plausible stiffness and

damping parameters.

Review 9f Previous Pertinent Work

Airframes are generally modelled using powerful finite element analysis packages such _ts

NASTRAN that are capable of representingquite detailed aspects of the structural system. The

accuracy of such models is determined by comparing the analytical results with flight or ground

vibration test results. In the case of helicopter airframes, several recent efforts have focused on the

correlation of NASTRAN model data with ground vibration test data 1-3. The conclusions reached
in these studies suggest that in cases where there is some degree of correlation, the model

frequencies compare favorably with test frequencies, but g.enerally only in the low frequency range



belowabout 15 Hz 1-2. The frequency response functions at selected locations also compare
reasonably well in this range. Outside this range tile comparisons arc generally unsatisfactory, and

ttle eigenvectors do not usually compare favorably in either range.

Ahhough there have been numerous contributions to tile literature in the area of the

identification of structural dynamic systems 4-25, the majority of reported methods are based on

simply adjusting the elements of one or more of the K, M, and C matrices. While this approach

is capable of yielding a system matrix whose eigenvalues and eigenvectors suitably match

measured results, the methods generally lose all physical interpretability inherent in the original K,

M and C matrices by not maintaining relationships among elements dictated by the model

topology. These difficulties are compounded for large-scale models with thousands of de_ees of
freedom.

Kuo and Wada 25 used nonlinear sensitivity coefficients (NSC) in the identification procedure.

Their sensitivity coefficients are between the system parameters and eigenvalues. In the present

work the interest is in the change of system matrices as a function of physical variables of the

structure. A different type of sensitivity coefficient between system matrices and physical

variables has therefore been developed.
The most significant achievement in the present work 30 is to preserve the physical

interpretability of the M, C, K matrices so that the identification can provide evidence of possible

sources of erroneous modeling and point to specific regions of the model that are unduly sensitive

and need additional consideration in modeling. The identification procedure developed in this paper

is capable of adjusting physical quantities such as boundary conditions, moments of inertia,

stiffnesses, damping or other selected physical parameters.



PROGRESS DURING THIS REPORTING PERIOD

Our previous work was tested on simple analytical models,

simple structural systems like beams, and test results from AHIG

Helicopter. The method yielded reasonably accurate identification

of models and preserved physical interpretability of the system

matrices. However, the use of proportional or nonproportional

damping and nonlinear sensitivity coefficients did not adjust the

model in certain regions. A careful examination suggested that we

will need a more general representation of the damping behavior. In

order to accommodate damping parameters, other than the linear

viscous damping, we have studied the possible use of Hammerstein

integral equation based models. These models can accommodate both

linear and nonlinear systems. They have been used to consider

nonlinearities in forcing terms. We have modified this approach to

include linear and nonlinear damping. We have studied linear (non-

proportional damping) and Coulomb damping. The appendix to this

progress report contains some the details of our approach.

WORK PLANNED FOR THE NEXT REPORTING PERIOD

As a next step, we will study methods of including structural

damping. Following this work, we would like to include the modified

Hammerstein approach in our identification procedure that can

preserve the physical interpretability of system matrices.
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Figure 1.1: A mass-spring system

The identifying the constant c of a Single Degree of Freedom (SDOF) nonlinear

dynamic system and the estimating the parameters of Multiple Degree of Freedom

(MDOF) nonlinear dynamic system have been illustrated in this report.

These identification procedures are based on various models of nonlinear dynamical

systems. UsuaUy, a nonlinear system is represented by a set. of nonlinear differential

or integral equations. In many practical applications, an input-output approach of a

nonlinear dynamical system is a means of describing a relationship between the input

and the output, of the system in some straightforward way and is considered to be more

useful.

All approach for modeling a nonlinear dynanfical sx;stem is by the use of Volterra Series

2
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[1],[2].

t
x(t) = hl, (t -  )dT.

/0'/0+ h2(7.1,r2)u(t - "rl)u(t - 7.2)dT.ldT.2

-_- h3(7.1,7.2, 7.3)It( t - 7.1 )it(t - 7-2)

u( t - r3 )d71dT.2dT.3 +... (1.0.3)

The Volterra Series, Eq (1.0.3), is a functional series, It maps past inputs into the

present, output. This means that. many kernel values are required to estimate. Several

techniques have been presented [3],[4], [5]. Because we have to decide which terms of

Volterra Series are necessary for a given practical problem and to estimate many kernel

values, the procedure of identification is usually a difficult procedure.

Several other simple block-oriented input-output models for representing nonlinear

dynamical systems are as folloows. [7].

• Simple Hammerstein Model.

• Generalized Hammerstein Model.

• Simple Wiener Approach.

• Generalized Wiener Approach.

• Extended Wiener Approach.

• Simple Wiener-Hammerstein Approach.

• Generalized Wiener-Hammerstein Model.

• Extended Wiener-Hammerstein Model.

The" block-oriented models have been widely used because of their simplicity.

In 1985, a nonlinear difference equation model NARMAX (Nonliear Autoregressive

Moving Average Models with inputs) was presented by Leontaritis and Billings [9],[10]



• The NARMAX modelis consideredas an unified representation of a finitely realizable

nonlinear system. The finitely realizable nonlinear system in essence means that, the

state space of the system can not. be infinite dimensional. This model maps the past

inputs and outputs to current output. For the SISO (single input, and single output)

nonlinear dynamical system with white noise, it, can be denoted by [11]

x(k) = F[x(k - 1),...,x(k - n_),u(k - 1),...,u(k- n_)] (1.0.4)

Where F(*) is an unknown nonlinear function. In general, it will be determined for a

given real sampled nonlinear system. Leontaritis and Billings. proved that a nonlinear

discrete time invariant system can always be denoted by Eg.(1.0.4) in a region around

an equilibrium point, if the response function of system is finitely realizable and a

linearized model exists at the chosen equilibrium,

The NARMAX model is derived assuming zero initial state response, but it can be

carried over to the non-zero-initial-state cases. The response functions of a system are

different for different initial condition, but the input-output NARMAX model for the

system will always be the same within a region around an equilibrium point. Several

simple forms of the NARMAX model have been proposed for nonlinear dynamic system

identification, such as the Bilinear Model.[11],[12]

x(k) = ao+ _aix(k-i)+ _-_biu(k-i)
i=1 i=1

+ - - j)
i=1 j=l

the frational model.Ill], [13],[14]

b[x(_ - 1),...,
x(l,,) =

a[x( h" - 1),---,

x(z,.- ,.), u(k - 1),..., _,(i,.- _')i
(1.0.6)

x(k - r),u(k - I),--. ,u(k - r)]

Haber and Unbehauen [7] prefer the NARMAX model, because the NARMAX model

is parametric and has fewer parameters than the Volterra series.

4



In aerospaceengineeringappfications,a nonlinear structural dynamical system is

usually describedby a systemof nonlinear differential equations. In SISO case, the

nonlinear differential equation of a systemis of the form

-Fb& -Fcx + f(k,x) = u(t) (1.0.7)

where f(,) is a nonlinear ruction of _ ,x. If f(*) is represented by a polynomial

extension for simplicity; Eq.(1.0.7) becomes

+ bk + cx + a2x 2 + a3x 34 ...+

/32_ -_+/33_ 3 + ... = u(t) (1.0.8)

Every term in Eq.(1.0.8) has a distinct physical meaning. Identifying the parameters

of Eq.(1.0.8) are useful for dynamic analysis, structural dynamic design, control and

design modification. If the nonlinear structural dynamic system is modeled by using

Eq.(1.0.8), the problem of the identification of a system is to estimate the parameters

: b,c_2,...,/32,....

Many techniques for estimating these parameters have been proposed. Hanagud,

Meyyappa and Craig (1985) [15] used the method of multiple scales to formulate a

procedure for identification of parameters of Eq.(1.0.8). Mook(1988) [16] used a model

error method to find the model error d(t) which represents the nonlinear terms of the

nonlinear dynamic system and then estimated the nonlinear parameters from d(t) by

using a least square method. Yun and Shinozuka [17] proposed an approach that is

based on two versions of Kalman filter for identifying the parameters. Ibanez [18]

used an approach for estimating parameters in which it is assumed that the system

response is dominated by a periodic response at the forcing frequency and an approx-

imate transfer function is constructed. Broersen [19] replaced nonlinear terms in the

equation by a series expansion for a system subjected to random excitation. Distefano

and lqath, "fun and Shinozuka [20] [21] described several methods of of identification

and applied nonlinear Kalman filtering techniques for estimation.



If a structural control is considered,an input- output approachof nonlinear struc-

tural dynamic systemin time domain and its parameter identification is useful. For

this purpose, the HammersteinFeedbackModel (HFM) hasbeen consideredhere.



Example "

In practical egineering,the real damping usually is differenl from design damping.

Identification of the differenceis usefulfor analysis,design,and control. If the mass

matrix [I(], stiffnessmatrix [K], and dampingmatrix [cJ are known, the defference

of damping canbeestimated_, usingHammersteinFeedbackModel. The defference

of damping is assumedto be [dC]. Weassumea linear dynamic systemas following

deferentialequation.

]M]ls]÷ ([cJ ÷ _dc!)!x]÷ [a']l_] = IF]

where diference of damping is assumed as

, cj:io.o -o.oo l-0.005 0.05

The resposes of displacement zl(t): z:(t) and velocity a_l(¢), d'2(t) are obtained by

using ]_unge-l,iui.ta method "..... and shown in Fig. .. 1

The HFM of lhe svs_em is assumed as

z,(k) + o,_,(k - 11+ _2z,(_-- 2). _2(k - 2) + cos0.5(k - 2)

= ,_,s,(1_- 2) + a_-,(J,-- 2)
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&lid

x_(]:) - bl._'2(k - 1, = I,,z2(!_: - 2) + b3xl(k - 1

= b4_r,_(k - 2) + l,sJ:l(k - 2

where a l, a.2, a.a, I,_ b2. b3 are calculated from [Jig], [I{]. The [dC] has elements:

O4

dq_ = i_,Xt)_
0. 5

dcl2 --
(At) 2

bs

d___= -("t F"

b4
dc__ 2 -

( ,x_.)'-

At = 0.05 and 500 samples of the input, and output are considered, then tile estimated

parameters are shown in table 9.



_xact

0

005

Estimated

by blook

000001

0.0492

error: 1.6%

Estimated

by HFM

0.00002

0.0499547

error:O.09%

Table 2.

Exact

0

0.0025

Identified

0.000012

0.0025030

Error

0.12%

• \
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P

al

a2

a3

a4

a5

a6

a7

ErrorTrue P Est. P

-1.995 -1.995 0

1 1 0

1 0.99864 0.136 %

-0.2 -0.1994 0.06"%

0.3 - 0.298934 0.35 %

•-0.3 -0.298984 0.35 %

0.1 0.099702 0.29 %



Table 5

P

bl

b2

b3

M

b5

b6

b7

True P Est. P Error

- 1.995 - 1.995 0

1 1 0

1 0.99952 0.048%

-0.2 -0.19919 0.07%

0.3

-0.3

0.1

0.298169

-0.298756

0.099566

0.6 %

0.4 %

0.4 %

"l';_t_Ic ,6

al

a2

a3

a4

a5

;,,6

a7

;t8

True I'

-1.99

0.995

Est. 1'

-1.99002

0.995012

[,_irl}r

0.005%

0.0012%

2 1.98684 0.66 %

-1 -0.994756 0.5 %

-0.2 -0.198628 0.69 %

0.3 n 3n_nS') 0.69%

-0.3 -0.506l 2 %

O. 1 -0.9-:_(>1 5 %



Table 7

P

b l

b2

b3

b__,

b5

b6

b7

b8

]'rue

-1.99

O.995

2

P Est P

- i.99004

0.995016

1.99138

1 -0.99566

-0.2 -0.20172

0.3 O.3r, 1755

-0.3 -0.300028

O. I 0.(_9048

Error

0.002%

0.0016%

0.43 %

0.43 %

0.8%

0.6%

0.01%

0.95 %
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